

- 1. Subject name / subject module: Elective Subject: Industry Subject (VR technology)
- 2. Lecture language: English
- 3. The location of the subject in study plans:
 - Area or areas of the studies: Computer Engineering and Mechatronics
 - Degree of the studies: 1st degree studies
 - Field or fields (implementation of effects standard): Mechatronics
- **4.** Supervision of subject implementation:
 - The Institute / Another unit: Institute of Informatics and Mechatronics
 - The person responsible for the subject: Skiba Grzegorz, mgr inż.
 - People cooperating in the development of the programme of the subject:
- 5. The number of hours and forms of teaching for individual study system and the evaluation method:

	Teaching activities with the tutor																			
Mode		Form of classes														Total				
of study		SOW	ECTS		SOW	ECTS	Workshop	SOW	ECTS		SOW	ECTS		SOW	ECTS	 SOW	ECTS	 SOW	ECTS	ECTS
Full-time studies							11	14	1											1
Part-time studies									L											L
Credit rigor							Graded	assigni	ment											

6. Student workload – ECTS credits balance:

1 ECTS credit corresponds to 25-30 hours of student work needed to achieve the expected learning outcomes including the student's own work

Activity (please specify relevant work for the subject)	Hourly student workload (full-time studies/part-time studies)		
Participation in lectures	-		
Participation in exercises	11		
Preparation to exercises	4		
Independent study of the subject	-		
Preparation to the final test	8		
Participation in an exam / graded assignment	2		
Total student workload (TSW)	25		
ECTS credits	1		
* Student's workload related to trainings	25		
Student's workload in classes requiring direct participation of academic teachers	11		

7. Implementation notes: recommended duration (semesters), recommended admission requirements, relations between the forms of classes:

• Recommended admission requirements – none.

8.

- Recommended duration of the subject is taken from the course plan.
- Specific learning outcomes knowledge, skills and social competence:

	Specific learning outcomes for the subject		Teaching	Methods for testing of (checking, assessing) learning outcomes	
Outcome symbol	Outcome description	Form	method		
	Knowledge				
K_W16	A student is familiar with virtual reality devices and technologies that are used in mechatronics industry.	Classes	Inquiry methods	Final test	
	Skills				
K_U03	A student knows how to operate and maintain virtual reality devices, such as Oculus Rift, HTC Vive, PlayStation VR.				
K_U04	A student has experience in developing virtual reality applications and use of VR devices while solving practical engineering tasks.	Classes	Inquiry methods	Final test	
K_U15	A student is able to choose and configure correct environment to develop virtual reality applications, choose the right device and apply appropriate methods in order to solve a simple problem in Mechatronics.				

0% - 50%	ndst	80% - 86%	db
51% - 70%	dst	87% - 93%	db+
71% - 79%	dst+	94% - 100%	bdb

Activity	Grades	Calculation	To Final
Final test	bdb (5)	5 * 100%	5,0
Final result			5,0
Grade		5,0/5 = 100%	bdb (5,0)

10. The learning contents with the form of the class activities on which they are carried out:

(Classes)

- 1. Introduction to virtual reality technology;
- 2. Using Unity environment for multi-platform applications development;

3. Environment configuration for virtual reality - usage and testing with VR goggles: Oculus Rift, HTC Vive, PS 4 VR.;

- 4. Fast prototyping with assets;
- 5. Explanation of the terms GameObject, Camera, RayCast;
- 6. Developing scripts in C#.
- 7. Creating classes, properties, events;
- 9. Applying animations to objects;
- 10. Creating dynamic particles.
- **11.** Required teaching aids:
 - a. Lecture multimedia projector.
 - b. Laboratory classes specialist laboratory.
 - c. Exercises a room adapted for conducting classes in the form of exercises / workshops, multimedia projector.
- 12. Literature:
 - a. Basic literature:
 - Sharp J.: Microsoft Visual C#. Step by step., Microsoft Press, Redmond, 2015.
 - Sinicki A.: Learn Unity for Android Game Development, Apress, Berkeley, 2017.
 - Blackman S.: Unity for Absolute Beginners, Apress, Berkeley, 2014.
 - Blackman S.: Beginning 3D Game Development with Unity 4, Apress, Berkeley, 2013.

b. Supplementary literature:

- Flavell L.: Beginning Blender, Apress, New York, 2010.
- Neelakantam S., Pant T.: Learning Web-based Virtual Reality, Apress, Berkeley, 2017.
- **c.** Internet sources:
 - https://unity.com/learn, Unity learning library
 - https://docs.unity3d.com/Manual/index.html, Unity user manual and documentation
 - https://brackeys.com/, Game development tutorials database
- **13.** Available educational materials divided into forms of class activities (Author's compilation of didactic materials, e-learning materials, etc.)
- 14. Teachers implementing particular forms of education:

Form of education	Name and surname
1. Lecture	
2. Laboratory classes	
3. Training	
4. Project classes	
5. Workshop classes	Skiba Grzegorz, mgr inż.
6. Simulation game	
7. Language classes	